Day 29

Non-parametric Filters: Particle Filters

Particle Filter

- Kalman-like filter all densities are Gaussian
- histogram filter represent density as histogram over the entire domain of the state
- particle filter represent density as a (large?) set of samples drawn from the density
 - samples are called particles

$$\chi_t := x_t^{[1]}, x_t^{[2]}, ..., x_t^{[M]}$$

• each particle $x_t^{[m]}$, $1 \le m \le M$, is a concrete instantiation of the state at time t

Particle Filter

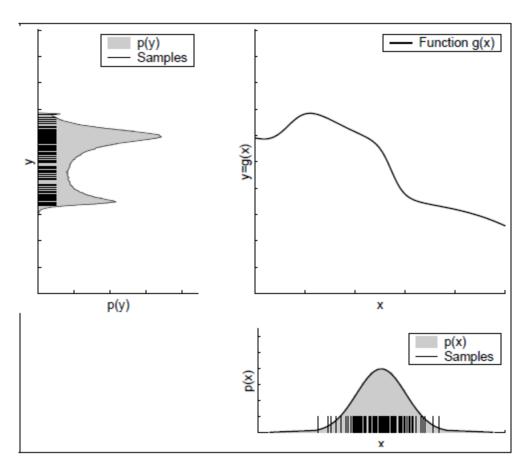
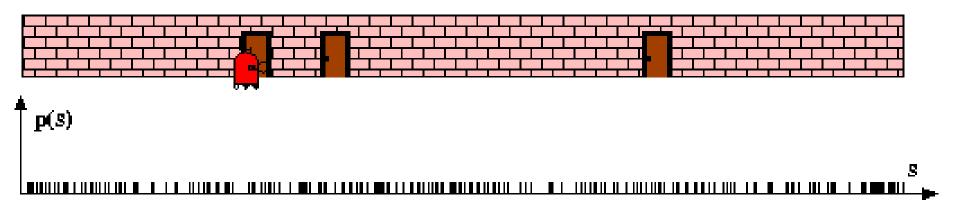


Figure 4.3 The "particle" representation used by particle filters. The lower right graph shows samples drawn from a Gaussian random variable, X. These samples are passed through the nonlinear function shown in the upper right graph. The resulting samples are distributed according to the random variable Y.

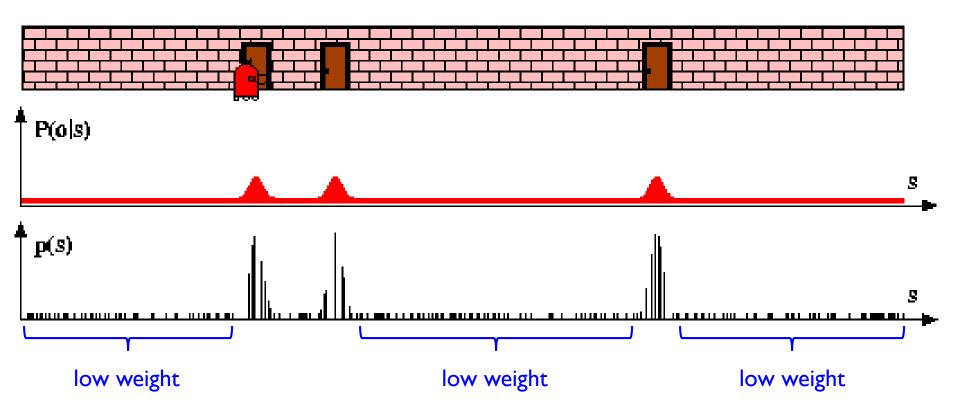
- consider a robot moving down a hall equipped with a sensor that measures the presence of a door beside the robot
 - the pose of the robot is simply its location on a line down the middle of the hall
 - the robot starts out having no idea how far down the hallway it is located
 - robot has a map of the hallway showing it where the doors are

- the robot starts out having no idea how far down the hallway it is located
 - particles with equal weights are randomly drawn from a uniform state density

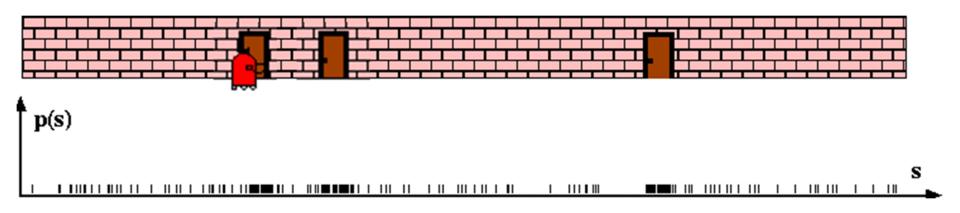


- height of particle is proportional to its weight
- the weights are called importance weights

- because the robot is beside a door, it has a measurement
 - it can incorporate this measurement into its state estimate
 - particles are reweighted based on how consistent each particle is with the measurement

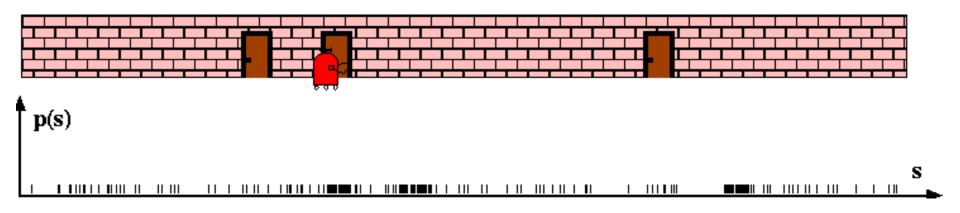


the existing particles are resampled with replacement where the probability of drawing a particle is proportional to its importance weight

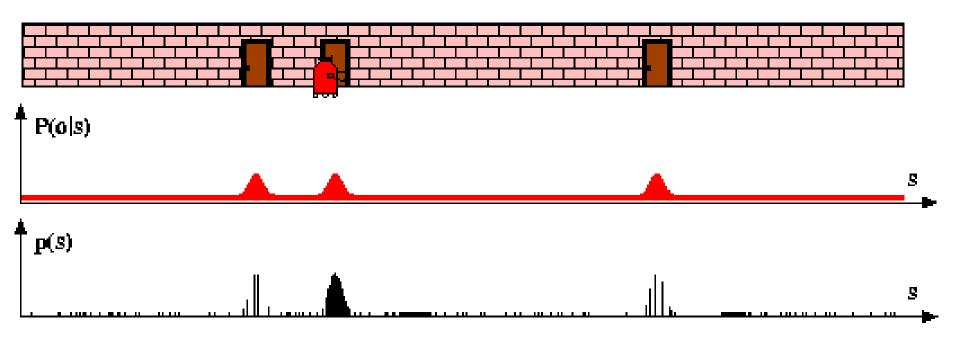


- resampling produces a set of particles with equal importance weights that approximates the density
- the resampled set usually contains many duplicate particles (those with high importance weights)
- the resampled set will be missing many particles from the original set (those with low importance weights)

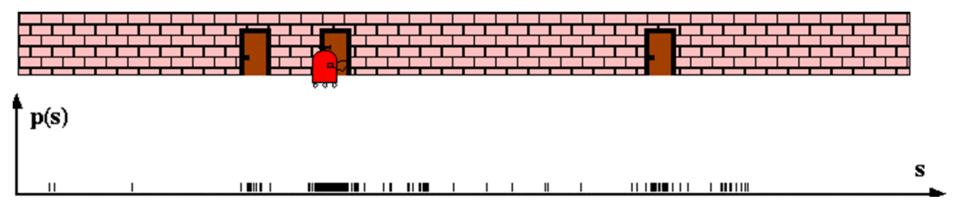
the particles are projected forward in time using the motion model



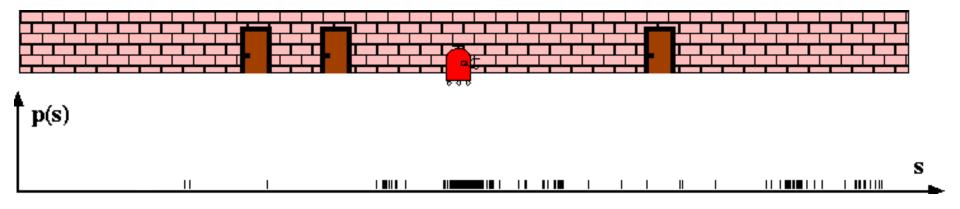
- because the robot is beside a door, it has a measurement
 - it can incorporate this measurement into its state estimate
 - particles are reweighted based on how consistent each particle is with the measurement



the existing particles are resampled with replacement where the probability of drawing a particle is proportional to its importance weight



the particles are projected forward in time using the motion model



Particle Filter Localization Algorithm

- I. algorithm pf_localization(χ_{t-1}, u_t, z_t, m)
- 2. $\overline{\chi}_t = \chi_t = \text{empty set}$
- 3. for m=1 to M
- 4. $x_t^{[m]} = \text{sample_motion_model}(u_t, x_{t-1}^{[m]})$
- 5. $w_t^{[m]} = \text{measurement} \underline{\text{model}(z_t, x_t^{[m]}, m)}$
- $\mathbf{6.} \quad \overline{\chi}_t = \overline{\chi}_t + \left\langle x_t^{[m]}, w_t^{[m]} \right\rangle$
- 7. endfor
- 8. $\chi_t = \text{resample } (\overline{\chi}_t)$
- 9. return χ_t

- χ_t set of particles
- u_t control input
- \mathcal{I}_t measurement
- *m* map

Resampling Algorithm

- I. algorithm resample($\overline{\chi}$)
- 2. for m = 1 to M
- 3. draw *i* with probability $\propto w^{[m]}$
- 4. add $x^{[i]}$ to χ
- 5. endfor
- 6. return χ

Drawing Particles

		compute this then this	
i	importance weights	cumulative sum	normalized sum
1	0.0846	0.0846	0.0235
2	0.0769	0.1615	0.0449
3	0.0895	0.2510	0.0698
4	0.4486	0.6995	0.1945
5	0.9505	1.6500	0.4588
6	0.6019	2.2519	0.6262
7	0.1720	2.4239	0.6740
8	0.2853	2.7092	0.7534
9	0.0301	2.7393	0.7618
10	0.8567	3.5960	1.0000

then generate ${\it M}$ random number uniformly distributed between 0 and 1

Drawing Particles

find the first normalized sum entry that this is less than

i	importance weights	cumulative sum	normalized sum	random numbers	particle
1	0.0846	0.0846	0.0235	0.5261	6
2	0.0769	0.1615	0.0449	0.5154	6
3	0.0895	0.2510	0.0698	0.8847	10
4	0.4486	0.6995	0.1945	0.0286	2
5	0.9505	1.6500	0.4588	0.3836	5
6	0.6019	2.2519	0.6262	0.5928	6
7	0.1720	2.4239	0.6740	0.4528	5
8	0.2853	2.7092	0.7534	0.3306	5
9	0.0301	2.7393	0.7618	0.5034	6
10	0.8567	3.5960	1.0000	0.7134	8

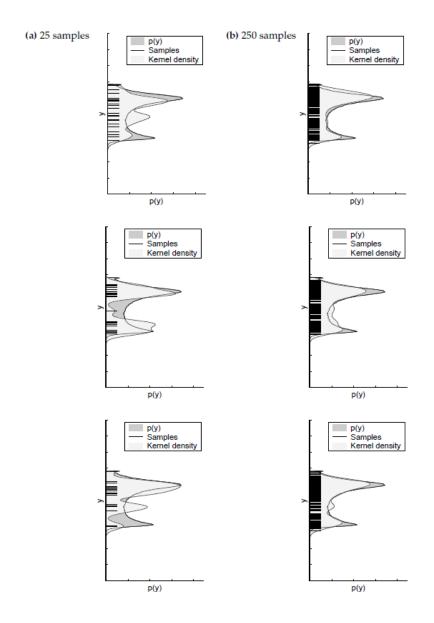
- this algorithm is known as "roulette wheel sampling/selection"
- inefficient as it requires generating M random numbers and M binary searches

· "stochastic universal sampling" is often used instead

Sampling Variance

- an important source of error in the particle filter is the variation caused by random sampling
- whenever a finite number of samples is drawn from a probability density, the statistics extracted from the samples will differ slightly from the statistics of the original density
 - e.g., if you draw 2 samples from a ID Gaussian and compute the mean and variance you will probably get a different mean and variance from the original probability density
 - however, if you draw 100 samples then the mean and variance will probably be very close to the correct values

Sampling Variance



Resampling Issues

- there are many issues related to resampling and how to perform good resampling
- notice that resampling as we have described it causes some particles to be eliminated and some to be duplicated
 - continuous resampling will eventually cause all of the particles to be duplicates of a small number of states
 - some PF implementations will add a small amount of noise to the particles so that they are not exact duplicates

Particle Deprivation

- it may happen that there are no particles near the correct state
 - this can happen because of the variance in random sampling
 - an unlucky series of random numbers can wipe out all of the particles near the correct state
 - when this occurs the filter estimate can become arbitrarily incorrect
- occurs mostly when the number of particles is too small for the dimensionality of the state